Python Lab

This set of exercises is intended to get you familiar with the Python programming language. It consists of a series of tasks where you will write small bits of Python code and run it. To do these tasks you will need an editor window in which you will type the code and a terminal window in which you will run the code. There are several editors available to you such as: vi, emacs, xemacs, or gedit. The editor you choose is not important, so pick the one with which you are most familiar.

The purpose of this tutorial is to give you a quick exposure to Python syntax and behavior. It is not comprehensive. For a more complete tutorial, please see the complete tutorial at python.org.

http://www.python.org/doc/current/tut/tut.html

Before you begin...

Open a terminal window and "cd" to the pythonExercises directory in which you will be writing these files. Use this terminal window to run the exercise once you write them.

You will be asked to type in the examples listed in order to learn and understand Python syntax. Just reading the exercise will not be nearly as effective, so type them in. For clarity, the text you will need to type is presented in bold.

Exercise 1: The print statement

The print statement prints output to the terminal. In your text editor type in the following lines:

print "HELLO WORLD" �print 'I love Hydrology!'

Save the code to a file called print.py and type at your terminal window: python print.py.

Note that both strings are printed to the terminal. Also note that you can use both double quotation and single quotation marks in Python. However do not mix them. For example,

print "Hello World'

will produce an error (single quote paired with a double quote).

Exercise 2: The comment symbol

In python, the "#" (pound symbol) is used to insert comments in your code. All characters after the # symbol are ignored by the Python interpreter.

In your print.py file, comment out the first line so it looks like this:

#print "HELLO WORLD" �print 'I love hydrology!'

and run your program again. Note that only the second print statement was executed. The first print statement was ignored since you commented it out.

Exercise 3: The if statement

The if statement allows you to test for certain conditions and execute different code based on those conditions. It has the general form:

if condition: � statement1 � statement2 � ... �elif condition: � statement3 � statement4 � ... �else: � statement5 � statement6

Make a new file called if.py and type in the following code to familiarize yourself with the if statement.

temp = 45

if temp < 50: � print temp, "degrees is cold." �elif temp < 85: � print temp, "degrees is warm." �else: � print temp, "degrees is hot."

Did you remember to indent? Indentation is very important in Python. Indentation is used to define blocks of code. You must indent the code after an if statement for it work properly. Typically four (4) spaces are used to intent each block. Some editors such as the one in the GFE and emacs will automatically type four spaces for you when you press the Tab key or when you press “RETURN” after typing an if statement.

Change the value of temp in your code and run it again. Make additional changes to temp to test each case.

Exercise 4: The for statement (loops)

The for statement is one way get Python to repeat blocks of code. It has the form:

for iterator in [list]: � statement1 � statement2 � ...

Make a new file called for.py and type in the following code to better understand the "for" statement and looping.

animalList = ['cat', 'dog', 'horse', 'chicken']

for animal in animalList: � print animal

In this example, the iterator is variable called animal. It takes on the next value in the list each time it returns to the top of the loop. The iterator is not an integer in this example. It is a member of the list over which the loop is executing.

To make the iterator an integer, the list in the for loop must be a list of integers. One of the easiest ways to make a list of integers is to call the range function in conjunction with the len() function. The len() function returns the number of items currently in the list. The simplest form of the range function is range(n). This generates a list of integers ranging from 0 to n-1. Add this code to your "animal" example and run it again:

for i in range(len(animalList)): � print animalList[i]

Note that the code did exactly the same thing as the previous loop. The len function returns the length of the list as an integer. So len(animals) is 4, and range(4) is the list [0, 1, 2, 3]. In this example, the expression animalList[i] refers to the ith element in the list.

There can be many ways to implement a particular iteration. However the first example is easier to read and requires less code. We encouraged you to use the Python iterator for non-integer cases when possible. In general your code will be easier to read and maintain.

Now go back to the Exercise 3 (if.py) and put a for loop around the multi-level if statement. Make the iterator an integer, call it “temp”, and use the range statement in the for loop to define the list “range(100)”. Don't forget to indent the entire if block so is sits inside the for statement.

Exercise 5: The def statement

The def statement allows you to package a chuck of code in an executable function called a method. In FORTRAN they are called subroutines, in the Pascal language they're called functions or procedures. Make a new file called method.py in Python and type in the following code and running it.

def printMethod(stuff): � print stuff

printMethod("a string")

printMethod(12.34)

printMethod([1,2,3,4,5])

In this example you defined a method called printMethod and then called it three times. Each time the same function was called with a different data type. Because Python is not a strongly-typed language, the same function can work with different data types.

Exercise 6: The list data type

Lists are an ordered collection of objects and they don't need to be the same type. They are defined with square brackets []. The elements of the list are placed between the brackets. Make a new fil called list.py and type in code to become familiar with list syntax.

myList = ["hello", 2, 10.34, ['Another', 'list', 'inside', 'a', 'list.']]

print myList

Note that this list contains four different types of objects: a string, an integer value, a float value, and another list. This illustrates that you can define lists within other lists. Lists can be nested.

Comment out your previous code type in the following code, to the same list.py file, and execute it.

locationList = [['Boulder', 40.0, -105], ['Denver', 39.6, -104.5]]

print "The whole List:", locationList �print "The first part:", locationList[0] �print "The second part:", locationList[1]

Note that we defined a nested list; a list within another list. We can refer to each part of the list with the dereferencing operator []. In this example locationList[0] refers to the first element, while locationList[1] refers to the second. Now add this code to the end of the same file:

for loc in locationList: � print loc[0], "is located at latitude:", loc[1], "longitude:", loc[2]

In this example, we're using a the loop iterator to extract the elements of the outer list. The print statement inside the loop extracts the various part of the inner list. You can directly access any part of a nested list by stringing the bracket notation together. Type in the following code at the end of the same file.

print "Boulder's latitude is:", locationList[0][1]

Exercise 7: The tuple data type

Tuples are very similar to lists except that they cannot be modified. They are immutable, however you can construct new tuples from olds ones. Tuples are used mostly when we want to associate a collection of data objects together. Rather than the square brackets that define lists, tuples are defined with parentheses.

Make a new file called tuple.py and type in the following:

location = ('Boulder', (40.0, -105.0)) �print location �cityName, latLon = location �print cityName, 'is located at', latLon

In this exercise, we defined a tuple, printed it and then extract the parts. Note that you can decompose a tuple by placing more than one target variable on the left side of the '=' (assignment) operator. This is a very clean and elegant way to extract data from a tuple. You can also use the bracket syntax to dereference item just as with lists. Add this line to the tuple.py file:

print location[0], "is located at", location[1][0], ",", location[1][1]

Note that you get virtually the same output with different syntax, but extracting items in the first case is more readable.

Exercise 8: The dictionary data type

The Python dictionary data type is a collection of data that can be "looked up" with a key value. The key value can be any immutable type including strings, integers, and tuples as long as the objects inside the tuple are immutable. A dictionary is defined with curly braces { }. The data the the key refers to can be any data type: lists, tuples, methods, arrays, even other dictionaries. The data pointed to by one key can be a different data type than the other keys. In the next example, the keys are strings and the data are strings.

Make a new file called dict.py and type in the following:

stooges = { � 'Larry' : '567-2345', � 'Curly' : '555-5555', � 'Moe' : 'unlisted', � 'Jenny' : '867-5309' � }

print stooges

print stooges['Larry']

print stooges.keys()�

In this example, we defined a new dictionary called stooges. The dictionary keys are names represented as strings. The data are strings the represent phone numbers. After printing out the dictionary, we accessed a single dictionary item using the square brackets [], just like with lists and tuples. We also added a line to print the list of keys in the dictionary. To add or change an entry to the dictionary we use the square bracket syntax, but this time it appears on the left side of the assignment (=) operator.

Add this code to the end of dict.py to try out the syntax to add a new dictionary entry.

stooges['Schemp'] = '555-7777'

print stooges

Note that there is a new entry in the dictionary, with the key, "Schemp"

To remove an entry, use the del statement. Add this code at the end of your file to demonstrate how to remove a dictionary entry.

del stooges['Moe']

print stooges

Note that 'moe' no longer exists in the dictionary.

Exercise 9: Modules

Fortunately, Python programmers all over the world have written some very useful Python code. This is also true in the GFE. Developers and forecasters have written code that helps others write code more efficiently without having to rewrite the same code over and over. In order to use this code, you need to import the particular module that you want to use. This section illustrates how to use the import statement.

For this example we will use the built-in time module. Make a new file called time.py and type in the following code:

import time

print time.gmtime()

print time.asctime(time.gmtime())

The first statement "imports" the Python time module. This module consists of a few dozen useful methods that help the programmer more easily deal with time. The second statement calls one of these function called gmtime(). It generates a tuple of 9 values that correspond respectively to the current year, month, day, hour, minute, second, weekday number, Julian day, and daylight time flag. If you pass this tuple into the asctime() method, it will return a string with the time nicely formatted.

Note that every time we called one of the time methods, we had to prefix "time." in front of each method. Without this prefix identifying which module the method lives in, Python would have returned an error stating that the method was undefined. There is a way to avoid this "extra" syntax that involves using the import statement in a slightly different way.

Replace your existing code with the following.

from time import *

print gmtime()

print "The current date/time is:", asctime(gmtime())

Note that in this example we imported the time module differently. This time we told Python to import everything in the time module and pretend that it is part of our local module as well. Now we can refer to any of the time methods without prepending the "time." to each method.

A word of caution. While this new way of importing modules seems very convenient, keep in mind that when we call methods in other modules this way, there's no way of knowing from which module the method came. It can be very frustrating when trying to understand what a particular piece of Python is doing but not being able to find the method. So, if it's not a large burden, we recommend that you use the "import module" syntax and prepend the module name when you call one of its methods. That way future readers of your code will know precisely from which module the method came. � �

� PAGE �8�

