Smart Tool Lab I

Exercise ST1: Creating and Executing a Smart tool

In this exercise you will create a new tool and execute it. This tool will modify temperature (T) data.

Before You Begin: Your GFE should be up and running. Select a temperature (T) grid from the Grid Manager so that it is displayed in the Spatial Editor.

Steps:

Open the Edit Actions Dialog by MB1-clicking on the big “E” in the button bar.

From anywhere in the list of tools in the Edit Actions Dialog, MB3-hold and select from the pop-up menu, New...

When the dialog appears, enter “TempPlus5” in the text box labeled Name, erasing the existing text that occupies the box.

Select the OK button at the bottom of the dialog.

When the editor window appears, find the “def execute” statement and replace the text: “WeatherElement1, WeatherElement2, varDict” with “T”.

Remove the comment lines from the body of the method if you like.

In the body of the execute method, insert this line:

T = T + 5

making sure that the line starts at the proper indentation level. This line should be at the same indentation level as the “return T” statement.

From the editor window menu bar, select File->Save. If you see a white or yellow dialog appear, that means you may have a typo somewhere in your tool. Find the typo ,fix it, and Save again.

Now in the Spatial Editor, select an edit area anywhere on the displayed T grid. You can use the Draw Edit Area tool to select the edit area.

From the Edit Actions Dialog, find the “TempPlus5” tool. You may need to scroll down the list to see it.

MB1-click on TempPlus5. You should see the grid points under the edit area increment by 5 degrees.

Congratulations! You just wrote your first Smart Tool. The exercises that follow will add more flexibility by building on this tool.

Exercise ST2: Adding a Graphical User Interface

While the tool in exercise ST1 could be useful, it would be impractical to modify the tool every time you wanted to increment the grid points by a different value. The Smart tool infrastructure provides ways to get information from the user and apply it when you execute the tool. This exercise shows you how to invoke a “scale” graphical user interface to get a delta value, which will make your tool more useful.

Before You Begin: Select a temperature (T) grid from the Grid Manager so that it is displayed in the Spatial Editor as with the previous exercise.

Steps:

Create a new tools by selecting “New” from the MB3 pop-up menu. This time name your tool “AdjustTScale”

When the tool template appears, scroll down to line 24 (you can view which the line number on the extreme lower right corner of the window) , the one that begins with “VariableList”. Uncomment this line by removing the two pound signs “##” from the beginning of this line.

Next scroll down to line 31, the line that begins with “Variable name 5” and uncomment this line as well as the following line (line 32).

Scroll down to line 37, the line that ends the block of VariableList with a standalone “]” character, and uncomment that line as well.

Replace the text on line 31 and 32 using this table:

Replace this text�
With this text�
�
Variable name5�
Delta Value�
�
defaultValue�
1�
�
minValue�
-10�
�
maxValue�
10�
�
resolution�
1�
�

Now you have enabled the scale GUI for your tool.

Next move to the “def execute” statement on line 51 and replace “WeatherElement1, WeatherElement2” with “T”, leaving “varDict” as is.

Uncomment line 55 and replace “var1” with “deltaValue” and replace “Variable name1” with “Delta Value” making sure you preserve the quotes around Delta Value and the space in the middle.

Finally, just before the “return T” line, add this line:

T = T + deltaValue

Save your tool and run it. Now you have a tool where the user can define a delta value at run time before applying the operation to the grid. This is a much more useful tool than the first one you wrote.

Exercise ST3: Conditional operations – The “where” statement

More often than not, you will want to selectively operate on forecast data depending on various conditions. In this exercise you will make “masks” that define where certain conditions are true and then operate on the grid exclusively over these masks.

Before You Begin: Select a temperature (T) grid from the Grid Manager so that it is displayed in the Spatial Editor as with the previous exercise.

Steps:

For this exercise we will build on the previous work you did in exercise ST2. To begin, copy your previous tool (the one that used the scale) to another new tool. Find the AdjustTScale tool in the Edit Action Dialog, press and hold MB3 and select Copy. When the dialog appears, enter the name TopoAdjustT and click OK.

Next find the TopoAdjustT tool in the Edit Actions Dialog, MB3-hold and select Modify...

When the edit window appears, note that this tool is identical to the AdjustTScale tool that you wrote in the last exercise.

For this tool we will add a new scale to the GUI that identifies where we want the adjustment to apply based on the Topography grid. To begin, select the line of the code that creates the scale for temperature and and select Edit->Copy from the editor's main menu.

Place the cursor immediately after the line you just copied and select Paste from the editor's main menu window.

Modify the pasted code changing the label name to “Modify T Above”, the default value to 7000, minValue and maxValue to 0 and 10000, respectively, and the increment to 100. Your new line should look like the when you're done:

 ("Modify T Above" , 7000, "scale", [0, 10000], 100),

Add Topo to the parameter list in the def execute statement, so the line looks like this:

def execute(self, T, Topo, varDict):

Next add a line to extract the Topo scale value from the varDict dictionary by adding this right after the line that gets the delta value:

 topoAbove = varDict["Modify T Above"]

Next move down to the execute method and add this line just above the T=T + deltaValue:

 aboveMask = greater_equal(Topo, topoAbove)

Finally change the T = T + deltaValue to this:

 T = where(aboveMask, T + deltaValue, T)

This line makes an assignment to T based on the conditional where statement. For grid points where the elevation (Topo) is greater than or equal to the topoValue, the temperature is incremented by the deltaValue. Elsewhere the temperature is not changed.

Save your tool, clear the current edit area and run it. Note that this time the GUI has two sliders: one for the temperature (T) delta value and another for the Topo value above which your changes will be applied.

Now select an edit area and run the tool again. Note that only the grid points inside the edit area were affected by the tool.

Exercise ST4: Combining masks

Often you will want to limit the operations performed by your tool by two thresholds instead of limiting it to just one. In this exercise, you will add another scale so that you can set a lower and upper limit to the Topo before adjusting the temperature.

Before You Begin: Select a temperature (T) grid from the Grid Manager so that it is displayed in the Spatial Editor as with the previous exercise.

Steps:

Using the same tool as you did in the previous exercise, add a new line in the VariableList definition so that another scale appears when you run the tool. Add this line just above the line that starts with “Modify T Above”...

 ("Modify T Below" , 9000, "scale", [0, 10000], 100),

Now add a line to extract the value from the scale just above the other line that fetches this topo value. When you're done, you should have something like this:

topoAbove = varDict["Modify T Above"]

topoBelow = varDict["Modify T Below"]

Next add a new line to calculate the new mask and change the name of the other line, so you end up with this:

aboveMask = greater_equal(Topo, topoAbove)

belowMask = less_equal(Topo, topoBelow)

Now we will need to combine the two masks into a single mask using the logical_and operator...

mask = logical_and(aboveMask, belowMask)

Modify the where statement to use the combined mask instead of the aboveMask:

T = where(mask, T + deltaValue, T)

Now run your tool again and note that the adjustment to temperature occurs within a range of topography values and not just above a specified value. Run your tool again after defining an edit area and observe how changes are limited to the edit area that you defined. What happen when you reverse the scale values so that the topoAbove value is greater than the topoBelow value? Can you explain why?

Exercise ST5: Working with Vector Data

The GFE supports vector data as well as the scalar data that you have been working with up to now. Vector data is represented as two different grids in the GFE, one for each component. For example, a Wind “grid” is actually two grids, the first is magnitude and the second is direction. Generally these two components are bound together in a tuple. In this exercise you will work with some Wind data so you can become familiar with how vector data is represented and manipulated in the GFE.

Before You Begin: For this exercise, make sure that the Spatial Editor is visible and that you have selected a Wind grid in the Grid Manager.

Steps:

Make sure that you have selected a Wind Grid from the Grid Manager and that it is displayed in the Spatial Editor.

From the Edit Actions Dialog, create a new Wind Tool. We will be incrementing the wind speed in this example, so give it an appropriate name.

When the editor window appears, replace the string “WeatherElement1, WeatherElement2, varDict” with “Wind”. You'll find this near line 51 at the def execute line.

Next we must separate the two wind components, so make this the first line of the execute method:

mag, dir = Wind

Let's simply increment the magnitude by 5 knots, so insert this line immediately following:

mag = mag + 5

Now all that's left is to return the Wind grid. Do this by reassigning the Wind grid to a tuple based on the modified magnitude and the unmodified direction:

Wind = (mag, dir)

Save your tool and run it with an edit area defined and without. Note that the tool operates over the entire grid if there is no edit area defined.

Now modify your tool so that you increment the wind only if the Topo value is above some threshold. You can hard-code this value if you like, or use a scale GUI to get the value from the user.

�
Exercise ST6: Working with TimeRanges

When you start writing more complex tools, you will almost certainly have to work with TimeRanges. TimeRanges are the way that the GFE represents a time period. All grids have a TimeRange associated with them. Anytime you want to fetch grids from an AWIPS database, you will need to specify a TimeRange to get the grids you want.

Before You Begin: For this exercise you will need to start the GFE from a terminal (if it is not already) so that you can see the output of your program. No grid editing will be done in this exercise.

Steps:

Create a new tool using the Edit Actions Dialog, however when the dialog appears (where you type in the name), make sure you select “variableElement” as the “Weather Element to Edit”. The variableElement selection is located near the bottom of the list.

When the editor window appears, replace “WeatherElement1, WeatherElement2, varDict” with:

“variableElement, GridTimeRange”

In the body of the method, insert this line:

print “GridTimeRange:”, GridTimeRange

Save your tool, select a grid in the Grid Manager and then run your tool. The output is a string representation of the TimeRange for the grid you selected. The GridTimeRange token is special and is set to the TimeRange of whatever grid is being processed by the tool. Using this, you have a way of knowing which grid is being processed from within your tool.

Select other grids and re-run your tool. Now select multiple grids for some weather element and run your tool. Note that you will see a TimeRange for every grid that you select. This demonstrates that the tool is run on every grid within the TimeRange selected in the Grid Manager.

Exercise ST7: Creating a TimeRange

Many times you will need to create a TimeRange from scratch. The SmartScript library contains a method to do this called createTimeRange.

Before You Begin: Again make sure you are running your GFE from a terminal, so you can view the output of your tool.

Steps:

Using the same tool that you did in the previous exercise, first comment out the print statement.

Next add these lines anywhere in the body of the execute method:

 newTR = self.createTimeRange(0, 24)

print “newTR:”, newTR

Save your tool, select a single grid in the Grid Manager and run your tool. Note the time that is printed to your terminal window. The createTimeRange method makes a TimeRange relative to 00Z today. So the time you see printed to your terminal should start at midnight local time today and end at midnight tomorrow. Now select multiple grids and run your tool again. Note that your tool repeats the same TimeRange for each grid because you are manufacturing the TimeRange from scratch and not using the GridTimeRange given to you by the GFE.

� PAGE �8�

