Smart Tool Lab III

Exercise ST12: Creating a Procedure

Procedures are very similar to Smart Tools but are more powerful since you, the author, has complete control over the weather element, time, and area over which the tool will be executed. While some tools are nearly impossible to write using the Smart Tool framework, virtually anything is possible with a Procedure. However, more code is required to accomplish the same task.

Before You Begin: Your GFE should be up and running and you should have some QPF grids available, as we will be modifying these grids.

Steps:

1. From the GFE main menu, select GFE-Define Procedures...

2. MB3-hold and select New...

3. When the dialog appears, enter “AdjustQPF” as the procedure name.

4. Delete all of the code starting just past the def execute line to the end of the procedure template.

5. Find the “import SmartScript” line and immediately after insert this line:

 from Numeric import *

6. Add a scale to the VariableList to get a QPF increment value with this line near the top of the tool.

VariableList = [("Increment QPF by:", 0.01, "scale", [0.01, 0.20], 0.01)]

7. In the body of the execute method get the Fcst grid corresponding to the timeRange that will be selected when the tool is executed. The code is slightly different than with SmartTools:

 try:

 qpfGrid = self.getGrids("Fcst", "QPF", "SFC", timeRange)

 except:

 self.statusBarMsg("No QPF grid found at:" + str(timeRange), "S")

 return

8. Now add a line to grab the value from the scale GUI:

 inc = varDict["Increment QPF by:"]

9. Use this value to add to the QPF grid.

 qpfGrid = qpfGrid + inc

10. Finally store the grid in the GFE by calling createGrid.

 # store the grid

 self.createGrid("Fcst", "QPF", "SCALAR", qpfGrid, timeRange)

11. Save your tool.

12. Now run your tool by selecting from the GFE main menu Populate->AdjustQPF. You should see the entire grid get incremented by the the amount you set in the scale GUI. Use the Draw Edit Area tool to make an edit area and run the tool again. Note that the entire grid was incremented and your edit area was completely ignored.

Exercise ST13: Limiting Changes to the Active EditArea

As you saw in the previous procedure exercise, the active edit area will be ignored unless you write some additional code to restrict the area over which the grid will be modified. This exercise will show you how to limit this area.

Before You Begin: Your GFE should be up and running and you should have some QPF grids available, as we will be modifying these grids. You will adding code to your previous tool.

Steps:

1. In order to limit the changes to the selected edit area, we will need to get the current edit area and convert it to a mask. Fortunately, the edit area is provided to the procedure when it is called. In your procedure make sure the “editArea” is included in the list of parameters in the “def execute” statement. When you're done it should look like this:

 def execute(self, editArea, timeRange, varDict):

2. Next right after the line that fetches the scale value but before the line that increments the grid, insert this line to convert the current edit area to a mask:

 mask = self.encodeEditArea(editArea)

3. Next replace this line: qpfGrid = qpfGrid + inc with a where statement that increments the grid only over the editArea mask.

 qpfGrid = where(mask, qpfGrid + inc, qpfGrid)

4. Save and run the tool from the Populate menu again. Make sure you select a QPF grid and an edit area before you run the tool. You should see grid changes only over the area you selected.

5. Now clear the area by clicking on the big “C”.

6. Run your tool again. Note that the entire grid was modified. When there is no edit area selected, the editArea passed into the procedure defaults to the entire grid.

Exercise ST14: Editing Grids in Time

There are many operations that would be more efficient if you could execute a single operation and apply it over a long time period containing many grids. In this exercise, you will see how to write a tool that operates over more than one grid at a time.

Before You Begin:

For this exercise, your GFE should be up and a few days worth of QPF grids available to edit.

Steps:

1. Create a new procedure using the the GFE main menu option GFE->Define Procedures... Give it a name like AdjustQPFinTime or something similar.

2. As you did in the last exercise, import the Numeric Python module and import another handy module called AFPS, too.

from Numeric import *

import AFPS

3. Define the VariableList as you did in the previous exercise:

VariableList = [("Increment QPF by:", 0.01, "scale", [0.01, 0.20], 0.01)]

4. Remove the code and comments found in the body of the execute method as with the previous exercise.

5. Insert a line to grab the scale value from the varDict at the start of the execute method:

inc = varDict["Increment QPF by:"]

6. The best way to process multiple grids in time is to first fetch the inventory of the weather element and then step through this inventory to fetch grids. A specialized method called _getWEInventory that does this is listed at the end of this document for completeness. However, to avoid lots of typing, open (Modify...) the procedure GetWEInventory, copy the method from that procedure and paste it into yours. Paste the method just before the execute method, exactly how it is positioned in the GetWEInventory procedure.

7. In the body of the execute method, get the QPF inventory by calling _getWEInventory. Then print out the inventory just to make sure things are working as expected:

 trList = self._getWEInventory("Fcst", "QPF", timeRange)

 print trList

8. Select a set of QPF grids in the Grid Manager, run your tool, select an increment value and examine the output. You should see a list of TimeRanges that correspond to each of the QPF grids you selected.

9. Next, convert the edit area that was passed in to a mask with this line, right after the print statement:

 mask = self.encodeEditArea(editArea)

10. We will want to loop over each TimeRange in the trList, so insert a for statement after the print statement. Just to give the loop something to do, print each TimeRange:

 for tr in trList:

 print tr

11. Run your tool again. You should see the list of TimeRanges print in one big list, and then again with a TimeRange appearing on each line. Remove the “print trList” line from your tool.

12. Inside the loop, fetch each QPF grid individually using the getGrids method. Feel free to lift this getGrids code from your previous procedure making sure you change timeRange to tr in both occurrences.

 try:

 qpfGrid = self.getGrids("Fcst", "QPF", "SFC", tr)

 except:

 self.statusBarMsg("No QPF grid found at:" + str(tr), "S")

 return

13. Next put in the where statement to modify each grid over mask we calculated outside the loop.

 qpfGrid = where(mask, qpfGrid + inc, qpfGrid)

14. Finally store the results in the GFE using the createGrid method. Again use the code in the previous procedure, if you like, being careful to indent properly. And don't forget to change the timeRange to tr, the iterator in your loop.

 self.createGrid("Fcst", "QPF", "SCALAR", qpfGrid, tr)

15. Save your tool, select multiple QPF grids in the Grid Manager and run your tool again. Examine each grid that you modify and convince yourself that each grid in the timeRange you selected was modified properly.

Extra Credit: After running your tool for a while you decide that you want to increment the QPF only in areas where there was non-zero QPF originally. In other words, in areas where QPF = 0.0 before the tool runs, you wish to make no changes to the grid. Modify your tool so that no changes are made to any of the grids where the QPF was 0.0 originally. Hint: You will need to make another mask and use the logical_and method to trim the edit area.

More Extra Credit: At some point you decide that the higher the elevation the more precipitation that falls. Modify your tool so that the elevation is considered when adjusting your QPF grids. Hint: Calculate a new grid that you will add to each QPF grid, instead of adding a single value to every grid point. A function like this might be useful: incGrid = Topo / 5000 * inc.

Exercise ST15: Calculating Basin Averages

In this exercise we will make a new procedure that calculates basin averages.

Before You Begin: For this exercise, your GFE should be up and a few QPF grids available in the Grid Manager.

Steps:

1. Create a new procedure called CalcBasinAvgs from the Define Procedures... menu.

2. Import Numeric python and AFPS as you did in prior exercises and remove all of the code and comments from the body of the execute statement.

3. Find your last procedure and copy the _getWEInventory method into this procedure.

4. Make a new method called getBasinEditAreas and place it just above the execute statement. It should look like this:

 def getBasinEditAreas(self):

5. Now fetch the entire list of edit areas using a SmartScript method:

 allEditAreas = self.editAreaList()

6. Since this list is quite large (nearly 1000), we will trim it down a bit based on the basin name. Insert this code to loop through the list saving only the basins in Oregon.

 # Examine each name and filter out all but Oregon basins

 eaList = []

 for ea in allEditAreas: # find names that match “***On”, where n=digit

 if len(ea) == 5 and ea[3] == "O" and ea[4].isdigit():

 eaList.append(ea)

7. Now return this list to finish off this method.

 return eaList

8. In the execute method, insert the code you used in the previous procedure to fetch the QPF grid corresponding to the timeRange passed into this procedure. For now, we will be fetching just one QPF grid per tool execution.

9. Now call the method we just wrote and save the returned list by inserting this line:

 areaList = self.getBasinEditAreas()

10. Now we will loop through this list and process each area, one at a time. Inside this loop we fetch the edit area, convert it to a mask of bits, use the mask to mask out the QPF grid points we don't want, and calculate the average.

 for area in areaList:

 basinArea = self.getEditArea(area)

 mask = self.encodeEditArea(basinArea) # make a mask

 pointCount = sum(sum(mask)) # adds up all non-zero points

 maskedQPFGrid = qpfGrid * mask # mask out all but this basin

 qpfSum = sum(sum(maskedQPFGrid)) # add up these points

 basinAvg = qpfSum / pointCount

11. Finally, print out the basin average, one per line. Ultimately, this would be more useful in some kind of SHEF-like format, but this gives you the general idea.

 print "Basin average for", area, "is:", basinAvg

12. Save your tool, select a single QPF grid, and run your tool. You should see a list of basin names followed by their basin average. What? You got an error? Perhaps you will need to check to make sure the number of points is not zero before you calculate the average. Use this code instead:

 if pointCount > 0:

 basinAvg = qpfSum / pointCount

 print "Basin average for", area, "is:", basinAvg

Extra Credit: Using the tool you just wrote, generalize it to work for a series of QPF grids. Use the code you wrote in Exercise ST14. For this tool you will need to loop over each grid found in the selected TimeRange and then process each basin inside this loop. Write your tool so you fetch the list of basins just once and re-use this list, for better performance.

Exercise ST16: Extracting Point Values from a grid

There are some products that report point forecasts extracted from your gridded forecasts. This exercise will show you how to extract point values from a grid.

Before You Begin: For this exercise, your GFE should be up and a few QPF grids available in the Grid Manager.

Steps:

1. For the first step, make a new Sample Set. You can do this by selecting the Sample Tool, anchoring a set of samples on your display, and then selecting from the GFE main menu, Maps->Samples->Save... Enter a name of your choice when the Save Sample Set dialog appears. We will use this sample set to extract point values at each sample point.

2. Create a new procedure and call it ExtractPoints. We won't need to import any additional modules for this tool.

3. Remove the code after the “def execute” statement as with the previous exercises.

4. First get the sample points using a SmartScript utility:

 samples = self.getSamplePoints(“YourSampleSet”)

where “YourSampleSet” is the name you enter when you saved the sample set. Make sure that you keep the quotes.

5. Next get the QPF grid for the selected timeRange. For this tool, just use the timeRange passed into the procedure and assume it corresponds to just one grid. Use the code you wrote in the previous tool to fetch the QPF grid. Make sure you pass in timeRange to the getGrids call.

6. Now we will write a loop that uses the grid point locations for each sample and extracts the value from the grid.

 for x, y in samples:

 lat, lon = self.getLatLon(x, y) # get the lat, lon

 print "QPF value at Lat:", lat, "Lon:", lon, "....", qpfGrid[y][x]

Note that when we dereference the qpfGrid, the y coordinate is first, followed by the x coordinate. This is the convention in Python and it's very important that you remember this.

7. Save your tool, select a single QPF grid, and run your tool. Note that the output has lots of digits past the decimal point. It's best that we not print all these digits to save on space and not imply a level of precision that we don't really have. So let's replace the print statement with this one that limits the number of digits past the decimal:

 print "QPF value at Lat:", "%.2f" % lat, "Lon:", "%.2f" % lon, \

 "....", "%.2f" % qpfGrid[y][x]

8. Save your tool and run it again. You should see fewer digits past the decimal this time.

Generally you would use a mostly static file from which you would read the point latitude and longitude values and use those to report point values. This exercise used a sample set to accomplish the same task.

Appendix:

Here is the listing of the _getWEInventory method used in exercise ST14:

Returns a list of timeRanges that make up the inventory for the

 # specified weather element, either MinT or MaxT

 def _getWEInventory(self, dbName, WEName, timeRange=None):

 # set up a timeRange if it is None

 if timeRange is None:

 timeRange = AFPS.TimeRange_allTimes()

 gridInfo = self.getGridInfo(dbName, WEName, "SFC", timeRange)

 if gridInfo == []:

 print "gridInfo is empty for weather element", WEName

 trList = []

 for g in gridInfo:

 start = g.gridTime().startTime().unixTime()

 end = g.gridTime().endTime().unixTime()

 tr = AFPS.TimeRange(AFPS.AbsTime(start),

 AFPS.AbsTime(end))

 trList.append(tr)

 return trList

10

